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Percolation and jamming in random sequential adsorption of linear segments on a square lattice

Grzegorz Kondrat* and Andrzej Pe¸kalski†

Institute of Theoretical Physics, University of Wrocław, pl. M. Borna 9, 50-204 Wrocław, Poland
~Received 5 September 2000; published 20 April 2001!

We present the results of a study of random sequential adsorption of linear segments~needles! on sites of a
square lattice. We show that the percolation threshold is a nonmonotonic function of the length of the adsorbed
needle, showing a minimum for a certain length of the needles, while the jamming threshold decreases to a
constant with a power law. The ratio of the two thresholds is also nonmonotonic and it remains constant only
in a restricted range of the needles length. We determine the values of the correlation length exponent for
percolation, jamming, and their ratio.
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I. INTRODUCTION

The problem of percolation is an old one@1# but still new
results appear and some unsolved questions remain@2#. In
general site percolation is defined on ad-dimensional lattice
where each site can be either occupied with the probabilic
or empty with the probability 12c. Neighboring occupied
sites form a cluster. If it is so large that it reaches the t
opposite edges of the lattice, e.g., top and bottom, the clu
is said to be percolating. The lowest concentration of oc
pied sites for which there is a percolating~or spanning! clus-
ter for an infinite lattice is called the percolation thresholdcp
@2#.

Another realization of the percolation problem is rando
sequential adsorption~RSA!, in which objects~point par-
ticles, segments, rectangles, etc.! are put on randomly chose
sites and the objects do not move@3#. It is also possible to
consider RSA in a continuum@4#.

Jamming is a problem related to RSA percolation@3#.
Again objects are placed randomly on the lattice sites un
concentrationcj is reached, where there is no room on t
lattice for the next object. For pointlike particlescj51, but
for spatially extended entitiescj,1. Continuum models of
jamming also exist@3#.

The RSA models irreversible dissociation@5# and binding
of large ligands to polymer chains@6#. Another area of ap-
plicability is the deposition of large molecules on solid su
faces, like proteins@7# or macromolecules on biologica
membranes@8#. The isotropic-nematic transition in the ha
rods such as polymers, has been studied first by Flory@9# and
later, e.g., in Ref.@10#. Spatial organization of needles into
well-organized nematic phase is however a different pr
lem, not considered here. General forms of percolation m
els have a wide range of applications—from chemisorpti
spatially disordered systems, porous materials, car park
and ecology@3#, to separating the good and bad people at
entrance to Hades@11#. For overview of percolation, jam
ming, and related problems see Ref.@3#.

In a recently published paper@12# Vanderwalle et al.
studied the relation between the two transitions—percola
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and jamming. They used two kinds of objects—linear se
ments of length 2 to 10 and square blocks. They have fo
that the ratio of the two threshold concentrationscp andcj is
constantcp /cj'0.62, regardless of the length of the need

In the present paper we extend the study of Vanderw
et al. to larger lattices and longer objects~we consider only
linear segments!. In particular we shall check the claim tha
thecp /cj ratio does not depend on the length of the need

II. MODEL

We consider a square lattice of sizeL3L. On the sites of
the lattice we put randomly linear segments~needles! of a
given lengtha, with the constraint that the needles cann
cross each other, although they may touch themselves.
used hard boundary conditions, i.e., the needles may to
the edge of the lattice but they cannot stick out of it—ea
needle must lay totally inside the lattice. Adopting op
boundary conditions does not affect the results.

To achieve simulation efficiency, our algorithm of dep
sition needles consists of two parts designed for two differ
regimes. First when the current concentration of the nee
is small, we chose randomly, from a uniform distribution, t
orientation~vertical or horizontal! and position of the uppe
left end of the needle to be inserted. If there is enough sp
on the lattice, the needle is deposited, if not, we pass to
next try. After a certain number of adsorption trials w
switch to the other regime where the dense routine is appl
A list of all empty sites and orientations still available
made. From that list a site is randomly chosen. We determ
the direction of the needle and check whether the needle
be put there. In any case the site is removed from the
The process is continued untill the last item on the list. Su
organization saves time, since we avoid inserting need
into densely packed regions.

A cluster is defined as a group of sites linked by t
needles. If there is an uninterrupted path between the top
the bottom of the lattice, the cluster is said to be percolat
or spanning, and the concentration of occupied sites defi
the percolation thresholdcp . The concentration at which no
more needles could be put on the lattice without violating
constraint determines the jamming thresholdcj .

We have considered lattices of sizesL530, 100, 300,
1000, 2500 and needles of lengtha51, . . .,2000. On the
©2001 The American Physical Society08-1
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FIG. 1. Thresholds for percolationcp , jamming cj , and their
ratio cp /cj vs needles’ lengtha. Lattice sizeL52500. Averaged
over 100 samples. Thex axis is in arb. units in all figures.

FIG. 2. Percolation thresholdcp vs needles’ lengtha. L
52500, 100 runs.~a! Short needlesa51, . . .,45; ~b! long needles
a51, . . .,2000.
05110
smallest lattices only smaller needles were located. Aver
ing was done over 100 independent runs. We have chec
that averaging over 1000 runs did not reduce the error~mean
standard deviation -s) in a marked way.

III. RESULTS

Our main results of the simulations are presented in F
1, where the percolation and jamming thresholds, as wel
their ratio, are plotted against the length of the needlesa

FIG. 3. Snapshot of a spatial distribution of needles at the p
colation threshold forL5100. ~a! a55, ~b! a520. They axes are
in arb. units.
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51, . . .,45). These data are obtained for lattice sizeL
52500. As convergence and error analysis shows~see be-
low! we can safely accept them as the asymptotic (L→`)
values.

The percolation threshold fora51, . . . ,13 diminishes,
then it begins to grow linearly with the slope 0.000 71. T
minimum valuecpmin50.463 is reached fora513. As seen
in Fig. 2, thes increases with the size of the needles start
from 0.001(a51) up to 0.008(a545). The increase of the
percolation threshold for longera is however quite clear. The
appearance of this unexpected feature is connected with
condition that the needles may touch themselves but t
cannot cross. In the simulations where the restriction
been lifted we observed no minimum but a monotonic
crease. In the model considered here the needles hav
tendency to align in parallel not only with respect to t
edges of the lattice but also to themselves~see Fig. 3!; hence
the needles form compact clusters. In the case of horizon
oriented needles, in order to move, e.g., two steps down,

FIG. 4. Jamming thresholdcj vs needles’ lengtha on a log–log
plot. L52500, 100 runs.a55, . . .,45.

FIG. 5. Percolation to jamming thresholds ratiocp /cj vs
needles’ lengtha. L52500, 100 runs. Logaritmic fit fora
515, . . .,45.
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FIG. 6. Percolation to jamming thresholds ratiocp /cj vs
needles’ lengtha. L52500, 100 runs.a51, . . .,2000.

FIG. 7. Convergence analysis of percolationcp , jamming
thresholdscj , and their ratiocp /cj , vs lattice sizeL. 100 runs.~a!
a55, ~b! a545.
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needles of lengtha are needed. The longer are the need
the higher is the percentage of occupied sites necessar
passing these two steps. The increase ofcp(a) is to a certain
degree compensated by vertically oriented needles, w
however also form clusters, thus offering many equival
ways for percolation. Further simulations for much long
needles indicate continuous increase incp , although at a
slower rate—see Fig. 2~b!. The jamming thresholds obtaine
from the simulations have much smaller error than that
percolation and even fora545 it is below 0.002. Values o
cj , as a function ofa, decrease according to a power la
~very good fit for alla>5) approaching the asymptotic valu
cj* 50.6660.01 ~see Fig. 4!:

FIG. 8. Deviation analysis.s vs lattice sizeL for several values
of the needles’ length.~a! Percolation,~b! jamming, and~c! perco-
lation to jamming ratio.
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cj5cj* 10.44a20.77. ~1!

The uncertainty of the exponent derived from the gra
analysis equals 0.02. Clearly this behavior differs essenti
from bare power law postulated in Ref.@4#:

cj;a20.2, ~2!

for the continuum~off-lattice! case of RSA of randomly ori-
ented and highly anisotropic~length to wide! rectangles.
Their a coincides with our length of needlesa. In the discrete
case we did not observe the maximum ofcj at a52 reported
in Ref. @4#. The reason is that on the lattice the number
possible orientations of the needles is restricted toz/2 ~where
z is the coordination number of the lattice! in contrast to the
continuum case. It is interesting that the asymptotic conc
tration for jamming~for a→`) is 0 off lattice and it remains
finite in the discrete case.

FIG. 9. Snapshot of a spatial distribution of needles at the ja
ming threshold forL5100. ~a! a55, ~b! a520. They axes are in
arb. units.
8-4
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Another interesting quantity in our model is the rat
cp /cj as a function ofa ~see Fig. 5!. It grows for a
51, . . . ,3, then it stabilizes untilla57 and then it grows
again. The plateau value ofcp /cj'0.62, the constant found
in Ref. @12#. The growth for longer needles (15<a<45)
could be fitted by a logarithmic dependence

cp /cj;0.5010.13 loga. ~3!

Further simulations for longer needles~see Fig. 6! support
our claim of monotonic increase incp /cj over a wide range
of a ~even up toa52000). We may conclude therefore th
the universality claimed in Ref.@12# holds only in a rather
restricted range ofaP @3,7#. As a matter of fact, the value o
cp /cj for a.7 shown in Table I of Ref.@12# is greater than
those fora<7 but the authors attribute it to the finite-siz
effects. This is however most probably just the beginning
the growth ofcp /cj .

We analyzed the dependence of the obtained thresh
on the lattice sizeL and needles’ lengtha focusing on con-
vergence. It appeared that for the ratioa/L,1/3 the values
of cp andcj do not vary much with increasingL ~keepinga
constant!—see Figs. 7~a! and 7~b!. The error bars~heres)
however decrease rapidly withL, while the difference of the
thresholds for different lattice sizes is much smaller than
appropriate error. Thus it is safe to take the values of
thresholds from the simulations withL52500 as the
asymptotic~exact! ones.

The finite-size effects can clearly be seen in Fig. 2~b!,
wherecp is drawn againsta51, . . . ,2000 forL52500. At
a5L/2 we can notice a sharp change in the slope of
function cp(a).

Consider now the dependence ofs of cp ,cj ,cp /cj on the
lattice size.s is analogous to the quantityD defined in Ref.
@12# as the sharpness of the transition~nonpercolating to per-
colating or nonjammed to jammed!. Here however the
power-law approach to the asymptotic valuep(`)2p(L)
;L21/n @cf. formula~3! in Ref. @12## does not hold. We have
found ~see Fig. 8! that thes for percolation (Dp), jamming
(D j ), and thecp /cj ratio (D r) decrease with the lattice siz
according to the power laws

Dp;L21/np, 1/np50.7560.05,
o
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D j;L21/n j , 1/n j51.0060.05,

D r;L21/nr, 1/n r50.7760.05. ~4!

Heren corresponds to the correlation length exponent@2#

j;uc2cpu2n. ~5!

These values are, within the error bars, the same for aa
51, . . . ,45 andagree with those found by Vanderwal
et al. @12# Also Nakamura@13# found n j51.060.1 for RSA
of square blocks. It seems therefore that the exponentsn are
good candidates for universal quantities.

Examples of spatial arrangements of shorter (a55) and
longer (a520) needles on a lattice 1003100 are shown in
Figs. 3 ~percolation! and 9 ~jamming!. Analysis based on
examination of different runs shows some regularity in t
needles distribution—we have found that the needles n
the edges have the tendency to stick along the bord
Longer needles, for obvious reasons, form clusters of para
alignment, as was already observed in Ref.@12#.

IV. CONCLUSIONS

We have performed extensive simulations of RSA us
linear segments of sizea51, . . . ,45 onsquare lattice sites
We have found that the percolation threshold is a nonmo
tonic function ofa, having a minimum due to parallel orien
tation of the needles, ata513, while the jamming threshold
decreases to a nonzero constant witha as a power law. The
ratio of the two thresholds is nonmonotonic too—after init
growth it stabilizes for some values ofa, and then it grows
logarithmically. Whether the asymptotic value is equal
one or less is an interesting question. To answer it unequ
cally is unfortunately beyond our computing power. The v
ues of the correlation length exponentn, for percolation,
jamming thresholds, and the ratio of the two, do not depe
on the length of the needles and they are, within the e
bars, equal to those found elsewhere@12,13# for deposition
of needles, rectangles, or squares.
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